
1

www.isc2.org

Introduction

Take any software development project plan today and it is
more than likely that the plan will not have a line item with time
allocated exclusively for security testing. It is only a matter of time
before software deployed or released without attestation of its
ability to withstand attacks will be hacked. It is not a question of if
the software will be hacked, but when it will be hacked.

(ISC)2®’s whitepaper, Code (In)Security, highlights various
considerations that need to be taken into account to develop
code that is secure. But merely developing secure code without
attesting to its assurance capabilities is akin to operating an
automobile without checking to ensure that the brakes work as
expected. With such an outlook, a crash becomes not just possible
but inevitable. This paper will discuss the need for attesting
software assurance, the different types of testing as it pertains to
functionality and assurance, a security tester’s profile, and some
proven strategies to incorporate security testing into the software
development lifecycle (SDLC).

The Need For Security Testing

Before we dive into discussing the need for security testing, it
is important first to recognize that there are three key quality
components to software assurance, as illustrated in Figure 1:
reliability, resiliency, and recoverability. Reliable software is that
which functions as needed by the end user. Resilient software
is that which is able to withstand the attempts of an attacker to
compromise confidentiality, and/or impact integrity, or availability
(CIA). Finally, recoverable software is software that is capable of
restoring itself or being restored to expected normal operations
when it has failed in its reliability or resiliency.

Figure 1. Software Quality Components

Most commonly, when software is said to be of “quality,” it
essentially means that the software is working as designed and
expected. This is primarily a consideration of software functionality,
and not its assurance capabilities. Today, however, besides the reliability
aspect of software quality, it is also imperative to take into account the
security of the software. This two-pronged approach to software
quality testing ensures that software is not only reliable but
resilient to withstand attacks that impact CIA.

Security testing is necessary because it has a distinct relationship
with software quality. Just because software meets quality
requirements related to functionality and performance, it does
not necessary mean that the software is secure. The inverse
however is true: i.e. software that is secure is software with added
resiliency, thus software of higher quality. For example, when the
“Add to cart” button on a web page is clicked and the selected
product is added to the cart (functionality) in less than the
expected two-second requirement (performance), it can be said
to meet the reliability quality requirements as established by the

Assuring Software Security
Through Testing

White, Black and Somewhere in Between
Mano Paul, CSSLP, CISSP, AMBCI, MCAD, MCSD, Network+, ECSA

2

www.isc2.org

business. But if the software is not tested for security, there is no
guarantee that the product code that is added to the cart has not
been tampered by an unauthorized user. Poor architecture and
implementation of the web application cannot assure the CIA
aspect of software assurance, which would otherwise indicate the
resiliency quality of the software.

Types Of Software Testing

In the following section, we will cover the various types of
software testing. These tests are categorized into reliability testing,
recoverability testing, and resiliency testing.

Reliability Testing

Reliability testing is primarily performed to attest to the
functionality of the software and is essentially the reason for
having a testing phase in the SDLC. It ensures that the software
functions as is expected by the business. It is also commonly
referred to as functional testing. Validation of software functionality
can be accomplished using any one or a combination of the
following tests.

Unit Testing: The most fundamental method to validate the
functionality of the software is by breaking the software
functionality into smaller parts and testing each unit in isolation.
Unit testing, unlike other testing methods, is not performed during
the testing phase of the SDLC but in the implementation (coding)
phase. It is performed by the developers. Unit testing provides an
opportunity to catch functional, logic, and security bugs early on
in the SDLC. The logic behind unit testing is that it is easier to find
the needle in the haystack when the haystack is broken down into
more manageable pieces.

Software architecture plays a major role in the ease and
effectiveness of unit testing. Software that is designed with
modular programming concepts such as high cohesion (discrete
functionality in modules) and loose coupling (dependencies
between units) can be more easily unit tested than software
which is not.

Unit testing also gives insight into Quality of Code (QoC) issues
because when one tests the source code – line by line, unit by
unit – inefficiencies, circular dependencies, and vulnerabilities can
be uncovered. Code inefficiencies include remnants of code which
serve no required functionality, and infinite loop constructs that
exhaust hardware resources. Developers sometimes implement
complex business logic in not a very linearly-independent manner,
but rather in a cyclomatically, complex manner with circular
dependencies, which not only violates the secure design principle
of economy of mechanisms, but also impacts the performance
of the software. Unit testing is useful to help uncover such
complexities, besides helping to discover common coding
vulnerabilities, such as hard coding values, and sensitive information
such as passwords and cryptographic keys in the code itself
(inline).

Additionally, unit testing facilitates collective code ownership in
agile development methodologies, such as extreme programming

(XP) or Scrum. With accelerated development efforts and the
entire software team collectively responsible for the code that is
released, unit testing can help in identifying any potential issues
made by a programmer on the shared code base before it is
released. It extends the test coverage and, when integrated with
automated build scripts and tools, it can be used to automate the
testing process.

Logic Testing: The primary purpose of logic testing is to validate
the accuracy of the software’s processing logic. It is particularly
necessary to validate the implementation details of code that
is copied from other modules or code that is determined as
cyclomatically complex. Additionally, logic testing must not be
ignored in situations where the logic of the software is dependent
on user input.

Logic testing includes testing preconditions (if-then-else), and
looping constructs (for, for each, do while, while, etc.). It also
includes testing using predicate – something that is affirmed or
denied based on the logic. Boolean predicates return a true

or false depending on whether the logic condition was met.
Operators such as “AND”, “OR”, “NOT EQUAL TO”, “EQUAL
TO”, etc., are used to vary or negate intended functionality when
conducting logic testing. Blind SQL injection testing is a form of
testing using Boolean predicates, where the attacker uses true or
false probing queries to discover internal database architecture
and implementation.

Integration Testing: The logical extension to unit testing is
integration testing which is testing the software after the units are
integrated into a whole. In integration testing, the functionality
of the sum of all parts is validated. While unit testing results
could indicate that the software functionality of the individual
components is working as designed and expected, integration
testing provides insight into how the system will function and
perform as a whole. Additionally, when software is developed
in a distributed manner (multiple developers, multiple locations,
etc.), integration testing is imperative to ensure the reliability of
software operations.

Regression Testing: Business requirements change over time and
newer functionality is often added to software code. Whenever
code is modified there is the potential for breaking existing
functionality. This is where regression testing comes in handy.
Regression testing is performed before the software is released
or deployed to ensure that the software does not regress to a
non-functional or insecure state. Regression testing is sometimes
referred to as verification testing.

“Blind SQL injection testing is a
form of testing using Boolean predicates”

3

www.isc2.org

Regression testing is performed mainly on coding issues over
design flaws. It is particularly important for bug fixes as there is a
tendency for a software patch to break some other functionality
outside the scope of the fix. It is performed to ensure that it is
not just the symptoms but the root cause of the issue that is fixed,
besides verifying that the bug fix did not introduce any new bugs
or cause previously fixed bugs to reappear. Additionally, regression
testing must be performed whenever the data is changed or the
database is modified (changed column names, data types, size, etc.),
since these changes can potentially have side effects, reverting
functionality or reducing the security of the software.

It is important to allocate time in the project plan for regression
testing. A best practice is to predefine and use a library of tests

prior to the release of any version. However, one must recognize
that having a predefined set of tests may not cover newer threats
to software assurance.

Simulation Testing: When software that functions without any
problems in the development environment experiences hiccups
in the production environments, it is indicative of issues with
configuration management. This means that the development and
production environments are disparate in their configurations.
Since it is not advisable to conduct software testing in the
production environment, a mirrored or simulated environment
needs to be created and the software should be tested in this
simulated environment. Because the configuration settings of the
production (operational) environment are simulated, any issues of
the software not working can be determined early and addressed
prior to deployment.

Recoverability Testing

Recoverability testing is primarily performed to attest to the ability
of the software to restore itself or be restored to normal business
operations. It can also be referred to as performance testing. The
two most common types of performance tests include load testing
and stress testing, and these address the availability tenet of the
CIA security triad.

Load Testing: The goal of load testing is to determine the maximum
operating capacity for the software by subjecting the software
to a large volume of tasks, users, or data. In layman’s terms, it is
subjecting the software to duress with the goal of identifying its
breaking point. The strategy employed with load testing is that the
tests are iterative in nature. We start with a small volume and then
move in increments, until the peak load up to which the software
operates as expected is determined.

Stress Testing: Stress testing complements load testing. Once
the peak load is known, stress testing goes one step further to
determine how the software will respond when that peak load is
exceeded. It is subjecting the software to loads beyond its breaking
point to determine how the software will react. In addition to
providing insight into the recoverability of the software, stress
testing also gives insight into the fail secure (or fail safe) capabilities
of the software. Stress testing can also help identify resource
exhaustion, timing synchronization, and leakage issues.

It must be recognized that the implementation of security features
in the software can potentially impact the performance of the
software and so it is imperative to conduct performance tests to
determine if the software will meet the service level requirements
as expected by the business.

Resiliency Testing

Resiliency testing has to do with the attestation of the ability of
the software to withstand attacks. In other words, it is security
testing. It ensures that the software is designed and developed with
security controls in place that mitigate the risk of exploitation. In
this section, common approaches (processes) and techniques of
security testing will be covered.

Approach

There are different approaches to testing the software to ensure
its hack-resilience. The two main approaches are black box testing
and white box testing.

Black Box Testing: Otherwise known as zero-knowledge testing,
black box testing considers the software to be a black box as
depicted in Figure 2. The testers have no knowledge about the
software architecture or how it is implemented. They take a hostile
user’s perspective and test the software by checking how the
software behaves by passing in inputs and observing the output.
It is, therefore, primarily a behavioral analysis of the software.

Figure 2. Black Box Testing

“It is important to allocate time in
the project plan for regression testing.”

4

www.isc2.org

White Box Testing: Unlike black box testing, with white box testing
the testers have substantial knowledge of the software, ranging
from how it is designed to, and in most cases, even the source code.
The analysis is very structured in nature and, depending on the
availability of time and resource, can include the entire code base
and related data flow analysis. When the source code is analyzed,
security vulnerabilities are more likely to be detected, in addition to
insider threats posed by seemingly innocuous maintenance hooks
that can posed by implanted logic bombs or seemingly innocuous
maintenance hooks that can serve as a back door to attackers.

Although it may seem that in order to get an accurate picture of
the vulnerabilities of the software, white box testing would be the
preferred choice since it provides more extensive code coverage
than black box testing, this may not always be true. Just because
code compiles correctly without error does not necessarily mean
that it will run (execute) without any security problems. Denial
of service issues caused by resource exhaustion and deadlocks
are less likely to be detected in code review (a white box kind of
test), and black box testing is more useful in this endeavor. Table
1 depicts a summarized set of criteria and the testing approach
that can be used to address each. In reality it is a hybrid approach,
also known as gray box testing, that is recommended and often
employed to attest to the presence and effectiveness of the
security controls in the software.

Techniques

In addition to understanding the two common approaches
to security testing, the attestation of the software’s ability to
withstand attacks can be achieved by vulnerability assessment
and/or penetration testing. Although vulnerability assessment
and penetration testing are often synonymously used, there is a
distinction between the two.

Vulnerability assessment aims at identifying weaknesses in software
which are indicative of the absence of security controls that can
potentially mitigate the vulnerability. When security testing involves
vulnerability assessment, the team is looking to see if the security
controls that were identified as required were indeed designed
and implemented during the architecture and development phase
of the SDLC. These controls can include encryption, hashing,
masking, and input validation. Vulnerability assessments are usually
done using the white box testing approach.

Penetration testing includes performing a vulnerability assessment
but does not merely verify the presence or absence of security
controls. Penetration testing goes one step further by evaluating
and validating the effectiveness of the security controls that have
been designed and implemented. When conducting a penetration
test, the security tester plays the role of a malicious hacker and
attempts to break through (penetrate) the software controls,

Criterea

Determination of
root cause

Most likely to address the symptoms
than the root cause.

Limited as the analysis is behavioral; not
all code paths may be covered.

Not knowing the normal behavior of
the software; anomalous behavior may
not necessarily indicate flaws in logic.

Assessment can be performed in
pre- as well as post-deployment

production or production-like simulated
environment, giving insight into any
potential issues after deployment.

Greater as the source code and
configuration is available for review.

The availability of design and
architectural documents besides code

can be used to detect logic flaws.

Assessment is performed in
pre-deployment environments usually
providing limited issues pertaining to

configuration and change management.

Exact line of code or design issue causing
the vulnerability can be identified.

Extent of code coverage

Issues with deployment

Detection of logic flaws

Black Box White Box

Security Testing Approach

Table 1 – Comparison between Black Box and White Box Security Testing

5

www.isc2.org

thus compromising the confidentiality, integrity, and/or availability
aspects of software assurance. When a penetration test is
conducted, it is important to recognize that the appropriate
scope and rules of engagement are established because the
outcome of a test can be disruptive to the business, especially if
the test includes active exploitation of detected vulnerabilities.
Penetration tests usually begin with reconnaissance activities such
as scanning and spidering to gaining root privileges on the target
system. Because penetration tests take a hostile user’s perspective,
they are usually conducted using the black box testing approach,
although this may not always be the case.

One of the most prevalent mechanism used to attest to the
strength and effectiveness of security controls, more particularly
input validation, is fuzzing. By passing random to pseudo-random
data (called fuzz) into the software application and observing

how the software handles the fuzz data (also known as fuzz
oracle), security bugs can be detected. Fuzzing is also commonly
referred to as fault injection testing. In addition to software data,
network protocols, application programming interfaces (APIs),
and file formats can be fuzz tested. Though fuzzing may seem to
always be a black box testing type of activity, it is not exclusive
to that type of security testing. A fuzz test can be a white box
assessment when the format (specification) of the input (data)
that the software expects is known in advance. This type of fuzzing
is referred to as “smart” fuzzing. Conversely, when the fuzz that is
supplied as part of the attestation does not take into account the
expected format of the input, it is referred to as “dumb” fuzzing.
Smart fuzzing is obviously the preferred option as the results of
dumb fuzzing can be relatively more disruptive to the business. In
addition to validating the effectiveness of input validation controls,
fuzzing also gives insight into the exception and error handling
capabilities of the software.

Profile

One of the most important and crucial elements of a good
security test is the very people conducting the tests. In the area
of security testing, as with any other aspect of software assurance,
(ISC)2’s mantra: “It’s the people; security transcends technology,”
holds true.

What makes a good security tester?

Security testers are a breed all their own. In addition to an anti-
developer attitude, a good security tester’s profile includes a
creative mind to think out of the box. A good security tester
thrives and excels when posed with challenges. They have a

constant thirst for learning newer attack techniques and coming
up with all possible combinations of attack as they seek to exploit
weaknesses in the software or system. They usually have self-
driven personalities and their motivations are often related to ego
than materialistic pursuits. With appropriate training and skills on
software security throughout the SDLC, these testers become
very valuable to the organization.

Strategies

Since security testing is not an optional activity, it is imperative
to incorporate this vital activity into the SDLC. Security testing
should be made an integral part of the overall testing process. It
must be included into the scope of the software development

project, even before the code for that software is written. A
proven strategy is to incorporate a library of security tests into
the enterprise project template (assuming you already have one)
and maintain these tests in the centralized test and bug tracking
database/software. This will ensure that all projects will, at a bare
minimum, automatically inherit any tests that need to be run as
part of the project.

Another strategy is to start generating the test cases during the
requirement phase of the SDLC itself. When the requirements
are known, there is no need to wait until code is complete to
generate all the test cases. This proactive approach to testing gives
time for both functional and security test cases to be generated in
advance and the testing phase can be used efficiently to conduct
these test cases.

Additionally, training the software testers to conduct security
testing has its benefits. It not only ensures the resiliency (security)
aspect of software in addition to its reliability and recoverability
(functional) aspect, but it also empowers the software testers and
augments their marketability and career prospects.

“Good security tester’s profile includes a
creative mind to think out of the box.”

“Security testing should be made an
integral part of the overall testing process.”

“Fuzzing is also commonly referred
to as fault injection testing.”

6

www.isc2.org

Conclusion

Software assurance is comprised of reliability, recoverability,
and resiliency aspects of the software. Software testing must
address all of these. Without testing the software for its security
capabilities, it is only a matter of time before software will be
exploited (hacked). Software testing for functionality should
always be augmented with security testing for resiliency. Security
is an attribute of quality, and software that is less prone to getting
hacked can be said to be of higher quality than software that
doesn’t take security into account.

Unit testing is performed by developers and has the benefit of
detecting functional and software assurance issues early on in the
lifecycle because it breaks the software into small manageable
units. Logic testing is useful to ensure that the software’s
processing logic is accurate and as expected by the business.
Integration testing is useful to ensure that the system will function
as a whole when the individual components (units) are brought
together. Regression testing is necessary when code changes. It
can be used to compute the relative attack surface from one
version to another and provide insight into whether the state of
software security is improving or deteriorating. Simulation testing
is useful to detect data and configuration mismatches between
non-production and production environments.

Performance testing includes load testing and stress testing. These
are used to determine bottlenecks and to identify maximum
thresholds up to which the software can optimally perform as

expected by the business. Performance testing is useful to
determine issues pertaining to resource exhaustion and race
conditions.

The two most common approaches to security testing are black
box testing and white box testing. In reality however, gray box testing
– a combination of both black box and white box testing – is the
approach more often used. Vulnerability assessments that verify the
presence of security controls, and penetration testing which is used
to determine if those security controls are effectively working, are
common security testing techniques. Another prevalent technique is
fuzzing which uses fault injection to check the effectiveness of input
validation and error handling mechanisms.

Security testers play a vital role in attesting to the resiliency
of software. Incorporating a library of security tests into the
enterprise project templates, proactively generating test cases
early on in the SDLC, and educating and empowering software
testers to also take into account security testing are proven
strategies to incorporate security testing into the SDLC.

In conclusion, it is important to recognize that the color of the
pieces in a game of chess provides no advantage. How the game is
played is what makes the difference. Similarly, how the organization
uses black box or white box testing is what makes the difference
in whether the software is secure or not. Security testing can be
used to achieve software assurance – akin to setting up the chess
board so that you are able to defend your organization and avoid
checkmate.

7

www.isc2.org

About (ISC)²®

(ISC)² is the largest not-for-profit membership body of certified
information security professionals worldwide, with over 70,000
members in more than 135 countries. Globally recognized as the
Gold Standard, (ISC)² issues the Certified Information Systems
Security Professional (CISSP®) and related concentrations, as well
as the Certified Secure Software Lifecycle Professional (CSSLP®),
Certified Authorization Professional (CAP®), and Systems Security
Certified Practitioner (SSCP®) credentials to qualifying candidates.
(ISC)²’s certifications are among the first information technology
credentials to meet the stringent requirements of ANSI/ISO/IEC
Standard 17024, a global benchmark for assessing and certifying
personnel. (ISC)² also offers education programs and services
based on its CBK®, a compendium of information security topics.
More information is available at www.isc2.org.

About the Author

Mano Paul, CSSLP, CISSP, AMBCI, MCAD, MCSD, Network+,
ECSA is CEO and President of Express Certifications and
SecuRisk Solutions, companies specializing in professional training,
certification, security products and security consulting. His security
experience includes designing and developing software security
programs from Compliance-to-Coding, application security risk
management, security strategy and management, and conducting
security awareness sessions, training, and other educational
activities. He is currently authoring the Official (ISC)2 Guide to
the CSSLP, is a contributing author for the Information Security
Management Handbook, writes periodically for Certification,
Software Development and Security magazines and has
contributed to several security topics for the Microsoft Solutions
Developer Network. He has been featured in various domestic
and international security conferences and is an invited speaker
and panelist in the CSI (Computer Security Institute), Catalyst
(Burton Group), TRISC (Texas Regional Infrastructure Security
Conference), SC World Congress, and the OWASP (Open Web
Application Security Project) application security conferences. He
can be reached at mano.paul@expresscertifications.com
or mano.paul@securisksolutions.com.

References
	 Brown, Jeremy. “Fuzzing for Fun and Profit.” Krakow Labs Literature,
		 02 Nov. 2009. Web.

	 Gallagher, Tom, Bryan Jeffries, and Lawrence Landauer. Hunting Security Bugs. 	
		 Redmond: Microsoft, 2006. Print.

	 Kelley, Diana. “Black Box and White Box Testing: Which Is Best?” Search
		 Security.com. 18 Nov. 2009. Web.

	 “OWASP Testing Guide V3.” OWASP. 15 Sept. 2008. Web.

	 “Penetration Testing vs Vulnerability Assessment | Darknet - The Darkside.” 		
		 Darknet - The Darkside | Ethical Hacking, Penetration Testing & 		
		 Computer Security. 25 Apr. 2006. Web. 17 Aug. 2010.

