
1

www.isc2.org

Introduction

As we expand on the train of thought from (ISC)2®’s whitepaper
Code (In)Security, which closed with the admonition that “insecure
code means checkmate,” we must realize that the state of affairs
when it comes to software security is even more than a chess
game; it’s nothing less than a battle – a battle between the
attackers and the defenders; between those who are trying to
break your software and those who are trying to defend it at all
costs; between the black hats and the white hats. We are at war,
and a war in which the enemy is not only merely subtle, but in
most cases invisible. The theme for the Randolph Air Force base
conference, “Cyber Security, the Invisible Man”a only accentuates
this point. While the best of military efforts can secure air, land,

Table 1. Definitions of Software Assurance

and sea, it can all be thwarted by an infiltration in cyberspace.
Malicious threat agents can exploit vulnerabilities in applications
(software) and use those exploited applications as launch pads to
compromise host systems and/or networks entirely.b

Software Security a.k.a. Trust in Cyberspace

Software security is all about trust – about assurance and
confidence that the software will, first, function as it is expected
to and, second, be robust enough to handle any threats that can
thwart its expected operations. Some prefer to use the term
software assurance interchangeably with software security. There
are many Software Assurance definitions as depicted in Table 1.

Trust in Cyberspace
Mano Paul, CSSLP, CISSP, AMBCI, MCAD, MCSD, Network+, ECSA

Organization

National Institute of Standards
and Technology (NIST)

National Aeronautics and
Space Administration (NASA)

National Information
Assurance Glossary

SAFECode

Definition

The planned and systematic set of activities that ensures that software processes
and products conform to requirements, standards, and procedures to help
achieve trustworthiness (no exploitable vulnerabilities exist, either of malicious or
unintentional origin) and predictable execution (justifiable confidence that software,
when executed, functions as intended).c

The application of planned and systematic set of activities such as quality assurance,
quality engineering, verification and validation, nonconformance reporting and
corrective action, safety assurance, and security assurance during a software life cycle,
to ensure that software processes and products conform to requirements, standards,
and procedures.d

The level of confidence that software is free from vulnerabilities, either intentionally
designed into the software or accidentally inserted at anytime during its lifecycle, and
that the software functions in the intended manner.e

Confidence that software, hardware and services are free from intentional and
unintentional vulnerabilities and that the software functions as intended.f

2

www.isc2.org

Irrespective of the various ways in which software assurance
can be defined, one common thread that is evident in all of
the tabulated definitions is that software assurance/security is
about confidence and trust. When software cannot consistently
guarantee this confidence, attacks on the network and hosts that
spur from vulnerabilities in the software are inevitable. And shifting
the blame to the network layer for software-related weaknesses
is akin to blaming the postal service for delivering a letter bomb.
Since there is no way to prevent someone from sending the letter
bomb, what’s really needed is protection against the threats posed
by it. The software within our organizations and homes must
be reliable and resilient to attack. What’s really needed, in other
words, is trusted software.

Trusted Software – What is it?

While there are several aspects to trusted software within the
context of software security, in this whitepaper we will primarily
focus on the three qualities that distinguish trusted software from
that which is not trusted: reliability, resiliency, and recoverability.

Technical discussion on the level of trust that is set for the code to
execute, such as partial trust or full trust, is beyond the scope of
this whitepaper.

Figure 1. Software Security Profile

The reliability quality of trusted software means that the software
will perform as it is expected to, each time, every time. The
resiliency quality of trusted software means that the software will
perform without breaking any component of the security profile
and when broken, the recoverability quality of software will ensure
that the software is robust enough to restore itself promptly, thus
limiting any exposure or damage caused by the security breach.

The security profile for trusted software in the context of
software assurance includes the following:

	 •	 Protection against confidentiality, integrity, and availability 	
		 threats

	 •	 Assurance that authentication cannot be circumvented

	 •	 Validation of authorization credentials before access to 	
		 resources are granted

	 •	 Effective implementation of auditing functionality for 	 	
		 business-critical and administrative transactions

	 •	 Management of Sessions, Exceptions, and Configuration 	
		 parameters.

Components of the software security profile are illustrated in
Figure 1.

Organization

Object Management Group
(OMG)

Software Security Assurance
State-of-the-Art (SOAR)

Definition

This justifiable trustworthiness in meeting established business and security
objectives.g

The property of software which will consistently demonstrate that the software is
of quality, reliable, correct, dependable, usable, interoperable, safe, fault-tolerant and
secure and the basis for gaining justifiable confidence or trust.h

Software Security Profile

Confidentiality

Authentication

Session
Management

Integrity

Authorization

Exceptions
Management

Availability

Auditing

Configuration
Management

3

www.isc2.org

Threats that Impact Trust

There are several threats to software that can impact one’s level
of confidence or trust in it. These threat agents take advantage
of vulnerabilities in software and may be human or non-human.
Human threat agents can be broadly classified based on their
underlying motivation to exploit a weakness and materialize a
threat. They range from unintentional and non-malicious user
errors to intentional malicious threats, which include those from
hackers and crackers. Hackers and crackers also vary in their skill,
ranging from minimal, limited skills where they don’t necessarily
understand the consequences of their actions (script kiddies), to
highly-skilled organized criminal hackers. Non-human software
threat agents generally include software itself that is malicious in
nature. In fact the term malware has its roots in two other words:
malicious and software. The maliciousness of software is only
limited by the creativity and greed of the malware creator. These
threats may be developed externally, including malware such as
viruses and worms, spyware and adware, and Trojans; or they may
be embedded in code by an insider.

Figure 2 is a depiction of some of the most common categories of
software threat agents.

Figure 2. Software Threat Agents Categorization

With the prevalence of malware and embedded code issues in
this day and age (and statistics indicate that the rate of release of
malicious software supersedes even legitimate software releasesi) it
is important to be aware of the different forms of malware putting
a dent in confidence and trust. The boom in broadband access
and interconnectivity, combined with a movement from hacking
for fun to hacking for profit, helps explain the rise in malware
creation and distribution. What began primarily for fun as pranks
(defacement, hard drive corruption, etc.) is now a colossal and
profitable business undertaking, as evidenced by the recent case
of the largest credit card theft and fraud recorded in history to
date. This theft was masterminded by Albert Gonzalez who, with
his accomplices, stole more than 130 million credit card numbers

by exploiting injection vulnerabilities and using packet sniffing
malware that allowed the hackers to create backdoors and steal
sensitive data. j

For purposes of logical organization, the most prevalent malware
threats can be categorized into proliferative (malware that
spreads) and stealthware (malware that remains hidden) as
illustrated in Figure 3. An exhaustive and all-inclusive description
of the various types of malware in existence today is beyond
the scope of this whitepaper, but the most common ones are
introduced in this section.

Figure 3. Types of Malware

Proliferative Malware

Proliferative malware includes malicious software programs that,
upon exploiting weaknesses in networks, hosts, and software
applications, aim at propagating their malicious operations to other
networks, hosts, and software applications connected to the victim.
Viruses and worms are the most common form of proliferative
malware.

Viruses and Worms

This is probably the most well known type of malware. Although
computer viruses and worms are often frequently clubbed
together, they are distinct in their traits based on their ability to
propagate. A computer virus is a piece of malicious software that
infects a computer program or executable. Just as a biological
virus requires the host to survive, a computer virus depends on
the victimized program or executable, and its spread is contained
within the victimized program. A computer worm, on the other
hand, is a type of malware that can actively propagate itself over
the network, infecting other computers on the network. For
propagation, worms require a network but they are not limited

Software
Threat Agents

Non-Human

Malware User Error
(Accidental)

Hacker
(Intentional)

Human

Malware

Proliferative

Viruses &
Worms

Spyware &
Adware Trojans

Stealthware

Rootkits

4

www.isc2.org

to exploiting vulnerabilities of hosts on the network alone. The
Samy worm is an example of a worm that went beyond just
infecting networks and hosts as most worms do. This Web worm
exploited scripting vulnerabilities in the MySpace Web application
and propagated itself to other unsuspecting users. Although the
Samy worm itself did little damage (merely adding “Samy is my
hero” to other MySpace user profiles without their permission) it
could have been designed to do much more nefarious activities
such as deface Websites, cause denial of service to all affected
users (which would have reached the millions), or steal private
and sensitive information. The Samy worm is a prime example of a
worm that exploits weaknesses in software (Web application) and
propagates itself. The Samy worm took advantage of an insecure
coding vulnerability known as Cross-Site Scripting (XSS).

The use of proper anti-virus software with updated virus
signatures, network segmentation, and patched and hardened
hosts, are all mitigating control measures against viruses and
worms, but it must also be recognized that proper coding that
addresses software security vulnerabilities is equally important
and needs to be layered on top of network and host protection
measures.

Stealthware

Stealthware includes malicious software programs such as spyware
and adware, Trojans, and rootkits that remain hidden and operate
often without the consent or knowledge of the victimized system
or user.

Spyware and Adware

Spyware and adware are examples of stealthware that operate by
invading the privacy of an individual. Spyware is used clandestinely
to harvest information about a system or user. Adware includes
malware that redirects users to marketing devices, displaying
annoying and unsolicited information and advertisements. Unlike
proliferative viruses and worms, spyware and adware don’t aim
at self-replication and propagating themselves, but instead try to
gain control of the system that they infect by exploiting software
and operating system vulnerabilities. Spyware and adware are
extremely potent malware because they can compromise
all of the core tenets of information security which include
confidentiality, integrity, and availability. They can pose threat to
confidentiality by installing keyloggers that record key strokes
and by stealing personal information, browser activity history, and
cookies. They can impact the integrity of the computing system
by installing software without user authentication and change
computer systems and modify registry keys and values. And
they can deface Websites by redirecting Web browser location
references and spin off memory intensive computer processes,
thereby impacting availability by causing resource exhaustion,
slowness, and denial of service.

Spyware and adware doesn’t just enter into one’s computer when
one visits malicious Websites that exploit weaknesses in browser
security (commonly known as drive-by-download). They can
also come disguised as legitimate software. Peer-to-peer sharing
networks are notorious when it comes to sharing software that
seems legitimate but is instead rife with spyware and adware.
Spyware can also be installed by worms that propagate in the
network.

Hardening the operating system with the use of anti-spyware
software, and increased browser security in conjunction with hack-
resilient software development, are safeguards that can help in
mitigation efforts against the potential surreptitious infestation and
exploitation attempts of spyware and adware.

Trojans

Known simply as a Trojan, Trojan horses are a type of stealthware
that gets it etymology from the historic account of how the
Greeks infiltrated the impenetrable defenses of Troy by presenting
Troy with a wooden gift horse that was accepted and taken within
its fortified walls. The Trojan horse harbored Greek soldiers who
crept out of the horse at night and opened the gates of Troy from
within, allowing the Greek army to penetrate and eventually take
over the city. In the software security world, Trojans are primarily
a threat against access control checks. Much like the wooden gift
horse, Trojan horses appear as innocuous programs with desirable
functionality, while they truly aim at circumventing access controls.
Trojans are usually designed to have functionality that will allow
the hacker to be able to connect to the victim’s computer on a
continual basis. Hackers can then use this covert channel to install
additional software such as keyloggers, spyware, and adware. Or
they can steal data and/or information, modify computer and user
settings, or misuse computer resources.

A Trojan can be installed on the user’s system by bypassing
browser security protection mechanisms or by exploiting software
on the victim’s system. The most prevalent means, however, is by
tricking a user into installing the Trojan. Trojans are usually spread
as e-mail attachments or as seemingly benign software in peer-to-
peer file-sharing networks that allow downloading of software.

While anti-virus programs can mitigate Trojan-based access
control breaches by detecting and quarantining (or deleting) the
Trojan, trusted computing safeguards, awareness training, and
education of end-users are effective safeguards against Trojan-
based threats.

Rootkits

Rootkits have earned a malicious reputation as highly dangerous
programs that can cause complete compromise. In the renowned
book Rootkits, authors Hoglund and Butler define a rootkit as “a
set (kit) of programs and code that allows an attacker to maintain
a permanent or consistent undetectable access to “root”,

5

www.isc2.org

the most powerful user on a computer.k” However, it must be
recognized that rootkits can be used for legitimate non-malicious
purposes such as remote control and software eavesdropping
when required for espionage, monitoring user behavior, and
consented law enforcement reconnaissance situations. Malicious
rootkits attempt to compromise system integrity by modifying
the operating system, masquerading as legitimate programs (as
loadable program modules or device drivers) and taking the OS
under siege. When rootkits are used for malicious purposes they
act as the proverbial wolf in sheep’s clothing.

Rootkits operate at high (root) privileges and because they usually
modify the operating system, they often go undetected. This
means that malicious usage of rootkits can potentially have dire
consequences and serious effects on trusted computing. Some of
the more prevalent uses of rootkits for malicious purposes include
the installation of keyloggers, the alteration of log files, and the
establishment of covert channels, all the while evading detection
and removal. Spyware and hackers that exploit unhardened
operating systems and vulnerabilities in software are primary
sources for the installation of rootkits. This warrants not only
the need to ensure that host systems are patched appropriately,
but also that the software that is built or bought is reviewed for
weaknesses that are discoverable and exploitable.

In addition to externally-developed malware, embedded code
issues such as insider backdoors and logic bombs, as depicted in
Figure 4, also pose a threat to trusted computing.

Figure 4. Types of Embedded Code

Backdoors

Backdoors are code constructs embedded in code to allow
programmers to bypass security mechanisms. They are often
designed to bypass authentication to gain remote access

to the system and are usually non-maliciously embedded in
code for troubleshooting or maintenance purposes. When
backdoors are implanted in code for troubleshooting purposes,
they are also referred to as maintenance hooks. Sometimes
programming errors or business logic flaws in design can also
result in intentional or accidental creation of backdoors. Although
maintenance hooks are usually designed without any malicious
intent, they are a threat to trusted computing and can potentially
compromise authentication controls. Attackers and malware can
take advantage of backdoors to gain remote access to systems.
The infamous Nimda worm is purported to have taken advantage
of a backdoor created by the Code Red II worm which took
advantage of unpatched Microsoft Internet Information Server.

Hardening operating systems, and developer education in
conjunction with proper configuration management processes,
alleviate the threats posed by backdoors. Static code reviews are
effective in identifying backdoors planted by insiders. Maintenance
hooks may be allowed in non-production environments, but prior
to deployment into production these need to be removed entirely
to avoid any potential threat.

Logic bombs

Like backdoors, logic bombs are also embedded code constructs
that remain dormant in code and are executed when specific
events and/or time conditions are met. Although the expiration
notice of a demo or trial piece of software can be deemed to
be a logic bomb, it is really not since the intent is not malicious.
However, in situations when the embedded code is triggered
by specific events or time to undertake a malicious activity, such
as deletion of media contents, denial of service, etc., then such
code constructs are referred to as logic bombs. Logic bombs are
also referred to as “slag code” because what remains after the
detonation (execution) of the implanted code is usually computer slag.

Logic bombs are usually associated with disgruntled or angry
employees who have access to the organization’s code. The
famous case of the disgruntled UBS PaineWebber employee,
Roger Duronio, who caused the company more than three million
dollars in recovery costs and almost half a decade to recover, is a
testament to the potency of attack that can be caused by a logic
bomb. Duronio was charged for having implanted a logic bomb
in code that was triggered on a specific date to delete important
and sensitive files from hard drives, which, when the effects of
the bomb were disclosed, also caused a drop in the price of the
company stock.l

Such computer sabotage and disruptions of operations can be
avoided when code is reviewed for the presence of logic bombs.
It must be recognized, however, that mere automated static code
reviews may not necessarily detect logic bombs as the bombs
are perfectly correct code that will compile. Human inspection
of code becomes critical since the reasoning behind how a logic
bomb code construct will execute cannot, for the most part, be

Maintenance
Hook/

Backdoor
Logic Bomb

Embedded
Code

“Embedded code issues such as insider
backdoors and logic bombs also pose a

threat to trusted computing. ”

6

www.isc2.org

detected by automated code review scanners. This is particularly
important in situations when the code is being developed in an
environment in which the organization has little or no control, as
is the case with outsourcing.

Security in the SDLC is Trust Assured

Irrespective of whether the source of threat is human or non-
human, the motivation of the threat agent is intentional or
unintentional, and the orchestration of a threat to materialize is
organized or not, it is absolutely necessary for a confluence of
people, processes, and technology to assure confidence in the
software that is built or bought. Derek Slater, Editor in Chief of
Chief Security Officer magazine, has rightfully expressed that it is
high time to get organized in addressing security threats that are
prevalent today.m

It is critical to ensure that the software can be trusted, whether
you build it in-house or acquire it from a third-party software
publisher. Throughout the software development life cycle
(SDLC), activities that verify and validate that the software is
reliable and resilient are necessary. A breakdown in any one phase
of the SDLC is all that is necessary to completely nullify any
efforts that the software development team or organization has
undertaken to assure justifiable confidence to its end-users.

Security in the SDLC from requirements to retirement such as
security requirements gathering, threat modeling, attack surface
analysis and reduction efforts, writing code that addresses
components of the software security profile, code reviews,
security testing, secure installation and deployment, security
operations and secure disposal, are all necessary to assure trust
and confidence. Defensive coding and anti-tampering techniques
such as code obfuscation and code signing can help deter security
attacks and provide heightened degrees of assurance when used
to provide authenticity of the source of the code. All these must
be done in conjunction with hardening the operating systems to
be ironclad and establishing appropriate change and configuration
management processes which should complement and not
contradict efforts taken to ensure that the software that is built or
bought can be trusted. Verification and validation (V&V) as part of
a certification and accreditation (C&A) process, and independent
third party assessments can also be used to determine levels of
trust in the software.

Conclusion

Ensuring trust in cyberspace is imperative and this means that
the software that we build or buy must be trustworthy. Tabulated
below are some characteristics of trusted software and computing.

Table 1. Trusted Software Characteristics

“Security in the SDLC from requirements
to retirement is necessary to assure

trust and confidence.”

Functions as expected (reliable)

Ensures security policy (resilient)

Is fault-tolerant and robust (recoverable)

Maintains confidentiality, integrity, and availability
of software and the data it handles

Prevents circumvention of authentication
and access control checks

Handles sessions, configurations,
and exceptions securely

Is deployed on host systems that
are adequately hardened

Ensures protection against proliferative
malware (viruses and worms)

Defends against malware that causes disclosure
and destruction (spyware and adware)

Ensures protection against harmful malware
that is purported as benign (Trojans)

Does not allow privilege escalation from
user land to kernel land (rootkits)

Is deployed/released without any
maintenance hooks (backdoors)

Ensures that there are no embedded code
security threats that can be conditionally

triggered (logic bombs)

Anti-tampering (obfuscation) and authenticity
(signed code) controls are present

Tested, validated, and verified for software security by
the organization or by an independent third party.

Trusted Software Characteristics

7

www.isc2.org

As in a game of chess, the defender has to always outthink the
attacker’s next move and strategize on how he can bring the
opponent to checkmate. However it must be recognized that
unlike the finality of checkmate in the game of chess, security
is not a one-time thing. It has been rightfully expressed by
individuals in high management echelons, such as the CEO of
Microsoft, Steve Ballmer, and Sir Tim Berners-Lee, credited with
the invention of the World Wide Web, that security is a never-
ending battle. One primary reason that validates this position
is the need, in this day and age, to conduct commerce and our
dependence on software to make those business transactions
possible. The network and host systems are essentially innocuous
until software (network and host operating systems) that manages
those systems is installed, on top of which is layered software for
conducting business transactions. The breakdown starts at the
software layer, and to win this perpetual battle, software security is
imperative. By the fulfilling of the tabulated characteristics, trusted
software, in short, ensures justifiable customer confidence and
trust, which is what software security is all about.

About (ISC)²®

(ISC)² is the largest not-for-profit membership body of certified
information security professionals worldwide, with over 66,000
members in more than 135 countries. Globally recognized as the
Gold Standard, (ISC)² issues the Certified Information Systems
Security Professional (CISSP®) and related concentrations, as well
as the Certified Secure Software Lifecycle Professional (CSSLP®),
Certification and Accreditation Professional (CAP®), and Systems
Security Certified Practitioner (SSCP®) credentials to qualifying
candidates. (ISC)²’s certifications are among the first information
technology credentials to meet the stringent requirements of
ANSI/ISO/IEC Standard 17024, a global benchmark for assessing
and certifying personnel. (ISC)² also offers education programs
and services based on its CBK®, a compendium of information
security topics. More information is available at www.isc2.org.

About the Author

Mano Paul, CSSLP, CISSP, AMBCI, MCAD, MCSD, Network+,
ECSA is CEO and President of Express Certifications and
SecuRisk Solutions, companies specializing in professional training,
certification, security products and security consulting. His
security experience includes designing and developing software
security programs from Compliance-to-Coding, application
security risk management, security strategy and management,
and conducting security awareness sessions, training, and other
educational activities. He is currently authoring the Official (ISC)2
Guide to the CSSLP, is a contributing author for the Information
Security Management Handbook, writes periodically for
Certification, Software Development and Security magazines and has
contributed to several security topics for the Microsoft Solutions
Developer Network. He has been featured in various domestic
and international security conferences and is an invited speaker
and panelist in the CSI (Computer Security Institute), Catalyst
(Burton Group), TRISC (Texas Regional Infrastructure Security
Conference), SC World Congress, and the OWASP (Open Web
Application Security Project) application security conferences. He
can be reached at mano.paul@expresscertifications.com
or mano.paul@securisksolutions.com.

a	 Cybersecurity, the Invisible Man
		 http://www.randolph.af.mil/news/story.asp?id=123159917

b	 New Wave of SQL Injection Attacks Alarm Researchers
		 http://searchsecurity.techtarget.com/news/article/0,289142,sid14_		
		 gci1314697,00.html#

c 	 National Institute of Standards and Technology (NIST) Software Assurance
	 Metrics And Tool Evaluation (SAMATE)
		 http://samate.nist.gov/index.php/Main_Page.html

d	 National Aeronautical and Space Administration (NASA) Software Assurance
	 Guidebook and Standard
		 http://satc.gsfc.nasa.gov/assure/assurepage.html

e 	 National Information Assurance Glossary (NIAG)
		 http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf

f	 SAFECode Publication – Software Assurance: An Overview of Current 	 	
	 Industry Best Practices
	 	 http://www.safecode.org/publications/SAFECode_BestPractices0208.pdf

g 	 Object Management Group
		 http://swa.omg.org/docs/softwareassurance.v3.pdf

h	 State-of-the-Art Report (SOAR) Software Security Assurance
		 http://iac.dtic.mil/iatac/download/security.pdf

i	 Symantec Internet Security Threat Report Volume XII, April 2008

j	 Computer Hacker Gonzalez to Admit Guilt, Forfeit $1.65 million
	 	 http://www.bloomberg.com/apps/news?pid=20601087&sid=aXHW5gb	
	 	 DC0EA

k	 Hoglund,G and Butler, J. Subverting the Windows Kernel Rootkit. 1st Ed.

l	 United States of America v. Roger Duronio
		 http://www.usdoj.gov/usao/nj/press/files/pdffiles/duronioindictment.pdf

m	 CSO Magazine, September 2009.
		 http://www.csoonline.com/issue/20090901

05/10

