Mano Paul, C

SSLP, CISS

Introduction

Past (ISC)*® published whitepapers have discussed the basics

of software security as it pertains to various stakeholders. In
response to reader requests, this whitepaper will look at software
secunty from the perspective of a software developer.

In the book, Hacking: the Art of Explotation®, author Jon Erickson
accurately and succinctly expresses that an understanding of
writing code helps those who exploit it, and an understanding of
exploitation helps those who write code. A software developer,
in other words, must first know how their code can be exploited
(insecure code) and then, in turn, use that knowledge to write
code that i1s not exploitable (code in security). Just as when
attempting to cure a malady, a physician needs to first diagnose
the core issue before treating the symptoms, when developing
hack-resilient software, one must first understand what constitutes
insecure code, before attempting to address vulnerabilities.

Introducing Code (In)Security

It must be stated from the outset, however, that software security
is more than writing secure code. In today’s security landscape,
considerations must go beyond mere functionality to take into
account security as well. There are several noteworthy resources
on software security, some of those worth mentioning are

the Hacking Exposed series, |9 Deadly Sins of Software Security,
Exploiting Software, Building Secure Software, and Writing Secure
Code. But even though these resources are considered must-
reads for any software developer; evidence from sources such

as the Chronology of Data Breaches” and security bug- and full
disclosure-lists show that software applications produced today
are still rife with vulnerabilities. Security breaches are merely

the symptoms of insecure design and programming, and unless
software developers are trained to architect secure software and
identify what constitutes insecure code, the trend of software
rampant with security weaknesses is likely to continue.

There is a lingering debate about who is ultimately responsible for
software insecurity. Opinions vary. Is it the software publishers, or the
organization as a whole? Some feel that the blame should rest with
the coder. But without proper education being imparted to software
coders as to how to write ‘secure’ code or how to not write
insecure’ code, it is unreasonable to put the blame totally on them.

It is the opinion of this author that software insecurity must be
attributable to all stakeholders in the software development
lifecycle, and software developers, who write code, can play a
vital role in the development of secure software.

“Software insecurity must be attributable
to all stakeholders in the software
development lifecycle, and software developers,
who write code, can play a vital role in the
development of secure software.”

INSECURE Code

As the Chinese adage goes, a journey of a thousand miles begins
with a single step. The journey to develop secure software begins
with the first step of identifying what makes up insecure code.

So what is insecure code! Insecure code is code which is
vulnerable to security attacks. For the benefit of the reader, the
word "insecure” itself may be used as an acrostic, to describe
programming constructs and code that are vulnerable to security
breaches. The following 1s by no means an all-inclusive list of
everything that constitutes insecure code, but is a compilation

of the most prevalent programming constructs that have been
observed to render software insecure.

Characteristics of Insecure Code

Characteristic

I - Injectable Code

Injectable code is code that makes the infamous and prevalent
injection attacks possible, allowing the user-supplied data to be
executed as code. There are various types of injection attacks:
attacks against databases (e.g. SQL injection), attacks against
directory structures (e.g. LDAP injection), and even attacks against
the operating system itself (e.g. OS command injection). Improper
validation or filtration leads to injectable code attacks.

Lack of validation of user-supplied input is the primary reason why
injection attacks are possible, resulting in serious consequences.
Breaches such as the disclosure of sensitive information
(confidentiality breach), tampering and manipulation of directory
structures and trees (integrity breach), denial of service (availability
breach), authentication and authorization check bypass, and even
Coding constructs that depend on the user-supplied data to

build the queries to be executed in the backend on-the-fly
(dynamically) is another possibility that should not be overlooked.
There are many defensive coding techniques against in; e
code. One option is input sanitization, which can be achieved
either by allowing only a certain set of valid inputs, or disallowing
and removing any invalid input patterns and characters.

A second option is the use of parameterized queries, those that
are not dynamically generated. These take the user-supplied input
as parameters. When architected correctly, they also aid with
performance. Coding standards should disallow the dynamic

canstruction of queries in code to mitgate injection attacks and
this must be enforced s S

“All Input Data is Evil-So Make Sure Yo, Han
with Due Care™* by Dino Esposito, publishe
a good reference article and as the latter h
suggests, it is extremely important to be 4
code and take necessary steps (due care)

dle It CO""QQ[}, .
din CoDe maga;iq
alf of the tyje K s
ble to 'de”tif‘; =
to addrey; it

Ightf,, r‘
JeCtabe

N - Non-Repudiation Mechanisms not Present

In a highly interconnected and mobile world, it is ;m

that the authenticity of code origin, and critical busmzerat.-fe
administrative transactions be indisputable. Noﬁ-repusj -am:l

the guarantee that the origin of code is what 1t claims t:]t!l:‘m I
is the ability to verify the authenticity of the code’s o, n tﬁ\ .
partieularty mmportant because code can be d0wnfoadgndlf =
a remote location and executed on a local systemn Ref;rre?m
to as "mobile” code, it must carry proof of its origin to V‘.“nf
authenticity, which can be achieved by signing the code. &o;
signing is the process of digitally signing code (executables sc;-p--
etc.). to assure that the code has not been tampered ‘Mthl, aﬂ{;d
that the code is from a valid software publisher. Code swnmgl S
also known as digital shrink-wrapping. gning i

Non-repudiation also applies to ensuring that the actions taken
by the code cannot be denied.

Auditing functionality in code is a mechanism to ensure that
repudiation is not possible. At a bare minimum, for critical busines
and administrative transactions, the code must be written 1o recorg
the action taken, including the timestamp and other pertinent .
details such as the user or process that is performing the acton

S — Spoofable Code

Spoofing is the act of impersonating another user or proce:
Spoofable code is code that allows for spoofing attacks. Spe
attacks allow the impersonator to perform actions with ths
same level of trust as a valid user, who has been impersor
Disclosure of information to unintended users, tampenng

data, resource exhaustion, bypassing authentication. circur H
authorization checks, deletion or manipulation of audt oz -
potential consequences of spoofing.

Spoofing has been observed in cases where the code bas!
segmented to run under different execution contexts be= :
the trust (privilege) levels of the caller of the code. This «
the principle of “least common mechanism’” which states -
mechanisms common to more than one user/process are = '
shared®. With just one execution context for &l code. a”
can spoof an identity and execute the code as if the &t

a vahd user with permission.

Predictable session identifiers, hard-coded passwords, caching
credentials, and allowing identity impersonation are common
coding vulnerabilities that can result in spoofing attacks. Figure | is
an example of a configuration entry that allows impersonation of

a specific user: In addition to the fact that impersonation is allowed,
the username and password is hard-coded inline in plain text, which
is also not recommended. Figure 2 is an example that illustrates
how an authenticated user's identity is impersonated in code.

Spoofable code can lead to several security compromises, the
most common of which is session hijacking and replay attacks.
An attacker can impersonate the identity of a valid user and take
control over an established session between the client and the
server and then replay the action.

In the event that there may be a valid business reason to allow
for impersonation, such actions must be closely monitored and
audited. Care must be taken to ensure that code written does not
allow for impersonation and spoofing attacks.

E - Exceptions and Errors not Properly Handled

Any software developer understands that it is very hard to
make software code error free. Exceptions and errors are
inevitable. However, not handling exceptions and errors, or
handling them improperly, are unacceptable options when it
comes to software security.

Figure 1. Configuration setting to impersonate a specific user

Code that reveals verbose details is an example of improper
handling of exceptions and errors.

A simple example of a verbose error is "Username is invalid” during
an authentication attempt. Even a simple message such as this is
more information than necessary. A message such as “Login invalid"
is sufficient. This non-verbose error message now leaves the attacker
to guess whether it is the username or the password which is
invalid, unlike in the previous case where the attacker knows that it
is the username which is invalid. Non-verbose error messages and
not displaying raw exception details will considerably increase the
work factor for the attacker who is trying to break into your system,
This can, however, have a negative impact on troubleshooting and
customer support, and so design considerations should be factored
in so that the software will display the appropriate verbosity of
error messages, without revealing the details.

Improper handling of exceptions and error details can lead to
disclosure of internal architecture, data flows, data types, data
values, and code paths. During a reconnaissance exercise, an
attacker can use the information gleaned from a verbose error
message, or in the exception details, to profile the software.
Figure 3 illustrates how an unhandled exception discloses that
there is a login account name SecuRiskLabUser, besides revealing
the exception details stack trace which can provide an attacker
information that they can use to profile the software.

<identity impersonate="true"™ userName="jOhnD03" pn::unrd-'pﬁsstm:d"/:q

Figure 2. Impersonating the authenticated user in code

//Creates a impersonation context object

System.Security.Principal.WindowsImpersonationContext impersonationCtxt;

//Sets the impersconation context cbject to that of the authenticated user (User.Identity)
impersonationCcxt = ((System.Security.Principal.WindowsIdentitcy)User.Identity).Imperscnace():
f/Code runs under the security context of the authenticated user

Figure 3. Error message discloses account name exception details

System.Data.SqlClient, TdsParser . Run(RunBehavior runBehavior, 5q1Command
System.Data.SqlClient, Sq)InternalConnectionTds .CompleteLogin(Boolean enlistoK) +33

Login failed for SQL Server login 'SecuRiskLabUser’. The password for this login has expired.
Description; As sshinded sacepton SCCurmed durpg Be exscuton of P Curtend wib regeesl Pesss revms b slach Wece for more B iormaion sboul I 0o and o here § orgraied n e code
Exception Details: SysemDets SoiCient Sof scepton Logn buied for SO0 Server by Secullmilabiiser The patawerd boi P Ggin Ran axpded

Source Error

Line 37: sqlDatasdapter _oSql04 = new SqlDatasdapter (_sCadText, _oSqlConn);

Line 38: DataSet _o0S = new DataSet();

Line 19: ~o5q10a.Fill (_o0S) ;

Line 40:

Line 41: V/é Sqloatadapter _oSqlCmd = new SqlDatasdapter (“Seculiskiab_CetLoginInfo®, _oSqlCenn);
Source File: o) Pl abe\Sgein aapu cs Line: 39

Stack Trace:

[SqlException (0xB0131904): Login failed for SQu Server login 'SecuRiskiabUser'. The password for this login has expired.]
System.Data.Sq1C)ient, SqlInternalConnection,OnError (SqlException exception, Boolean breakConnection) +800131
System.Data.SqlClient, TdsParser, Thromfucept ionAndwarning(TdsParserStatedbject state0bj) «186

cmdrandler, SqlDataReader dataStreas, BulkCopySimpleRe

System.Data,5q1C11ent. Sq)InternalConnect ionTds . AttesptOnelogin(Server Info serverInfo, String newPassword, Boolean ignoreSniOpe
System.Data.SqlClient.Sq] InternalConnect fonTds.LoginNoFai lover (String host, String newPassword, Boolean redirectedUserInstance
System,Data.5q1C1ient, Sq] InternalConnect onTds .OpenLoginEn] ist(Sq)Connection owningobject, SqlConnectionstring connectionoptid

System.Data.SqIClient.5q) InternalConnect ionTds. . ctor (DbConnect i onPool Ident ity identity, SqlConnectionString connect ionOptions

The absence of a catch-al exception-handiing routine, and m.cl*cly
bubbling the raw exception information to the front end or client, is
another example of improper exception or émor bend|Fig, VTR h
exception s caught, the code must handle the exception explcily.

Additionally, in the event of faillure, assets should not be put at sk,

which is the principle of fail-safe or fail-secure. Decisions must be
based on explcit permissions instead of exclusions.

It i1s important to ensure that errors and exceptions are handled so
that they are non-verbose, do not reveal more information than is
necessary,and do not violate the pnnciples of fail-safe or fail-secure.

C - Cryptographically Weak Code

Developers are essentially creative problem solvers who use

their skills and technological know-how to create solutions to
solve business problems and needs. Developers seek to improve
existing functionality. Unfortunately, this has been known to
backfire, especially in the context of cryptography. as evidenced by
the various poor custom cryptography implementations observed
in code reviews.

Such reviews reveal that cryptographic functionality in code is,
more often than not, custom-developed, rather than developed
by leveraging existing proven and validated standard cryptographic
algorithms. This contradicts the secure design principle of
“leveraging existing components” to minimize the attack surface.

Addtionally even when proven cryptographic algorithms are
used, implementation detall have been found to be insecure.
Cryptography algorithms use a secret value, known as a key,

to encrypt (convert plain text to cipher text) and decrypt
(convert cipher text to plain text). The key to the strength of a
cryptographic implementation is not necessarily the strength of
the algorithm rtself, but the way the key is derived and managed.
Using non-random numbers to derive the cryptographic keys
renders the cryptographic protection weak and ineffective.
Sometimes ASCII passwords that are easily guessable and non-
random are used to derive the cryptographic key, which should
be avoided. Another common problem is that keys are not stored
in a secure manner. Keys have been observed to be hard-coded
inline with the code. This is akin to locking your doors and leaving
the keys in the lock, thus providing minimal protection if any
protection at all,

Special attention must be paid when choosing the algorithm

1o see what the explortability of the algorithm has been. Once
chosen, Random Number Generators (RNG) and Pseudo-
Random Number Generators (PRNG) must be used to derive
the cryptography key for encryption and decryption. Derived keys
must also be stored in a secure manner.

U - Unsafe/Unused Functions and
Routines ;
N Code
und to be Inherg

Critl
wWithout nocemruly '

Unsafe functions are those that have been fo
dangerous. These functions were developed
taking into account the security Implications, The e
functions gives the Programmer no assurance of ® Of these
protection. They can result in vulnerabilities thay could ;
attacker to corrupl the system's memory and/or gain all
control over a system. One of the reasons Mmb"‘labhcf}mplmn
infamous bulfer overrun attack is (he use of uns, 0 the
code. Several security bulletins and patches h
to address these functions,

security

"W oan

afe function in
ave been Publishe

Unsafe functions are predominantly seen in legacy and older
generation .programming languages. Two common examples ¢f
these functions in the C programming language are Strepy and
strcat. Since these functions do not perform length/size checks
(also known as bounds checking), an attacker can supply Inp‘uls
of arbitrary sizes that can overflow memory buffers, Figure 4 15
an example of the unsafe C function strcpy being used to copy
the input data into a local memory buffer. If there is no bounds
checking, and the user-supplied input has more characters than
the local memory buffer can hold, the result will be an overflow
of the local memory buffer.

Figure 4. Use of unsafe 'strcpy’ C function

void CopyData (char* inputData)

{
char localBuffer [4];

strcpy (localBuffer, inputData);

Today, software publishers of programming languages are avoiding
unsafe functions in favor of safer altermatives such as the strepy a
strncat, which allow the developer to perform length/size checks

Another insecure coding construct, observed in code reviews,
is the presence of unused functions where redundant code that
no longer addresses any business functionality is left remaining
Changes in the business and advancements in technology and
the apprehension of breaking backward compatibility are reason
unused functions might be left in the code. This increases the
relative attack surface of the code.

Another classic example of unused functions in code is somethi
known as "Easter eggs". An Easter egg in software is secretly
hidden code that can result in a change of program behavior
(e.g. displaying a message, playing a sound, etc.) when particula
conditions (e.g., a series of mouse clicks, keystrokes, etc.) are
met. Easter eggs are usually innocuous, but they also increase 1
attack surface of the code and hence can have potenha”}_{ Se”f-
security consequences. Risk of losing customers. introducing r:_
bugs, and performance impacts leading to resource e_xhausuor--
i.e., availability impact, (along with the risk of looking like an

jac!) are some of the detrimental effects of Easter eggs.
om::: al-rt:de"Favonte software Easter Eggs™ i1s an interesting
) W|Z that highlights the ginister side of Easter eggs in software.
artic

_ ractice to minimize the relative attack surface of the
fis a best Fl)w's means avoiding the use of unsafe functions, removing
code. anfdr:ctllof‘ﬁ that cannot be traced to a requirements
:;ﬂilzy matrix, and avoiding coding in Easter eggs.

R - Reversible Code

The acclaimed IEEE paper entitled "Reverse Englneelrmg and
Design Recovery: A Taxonomy", defines reverse engineering

as “the process of analyzing a subject system tp identify the
system’s components and their interrelationships and create
representations of the system in another form or at a higher level
of abstraction.” In simpler terms, software reverse engineering,

or reversing, is the process of going backwards from system or
code to determine the internal design and implementation details.
Reversing can be performed on software at the system level or

at the code level.

Un-obfuscated or unsigned code is easily reversible. Obfuscation
of code is the process of making the code functionality difficult

1o understand, and is sometimes referred to as “shrouded" code.
Obfuscation is convoluting the code so much that even if you
have its source, it cannot be understood. Programs known as
obfuscators operate on source code, object code, or both, mainly
for the purpose of deterring reverse engineering. Figure 5 depicts
an un-obfuscated and an obfuscated version of a simple print
HelloWorld programt. Signing code (discussed earlier) is another

Figure 5. HelloWorld program before and after code obfuscation

anti-reversing technique, which offers more protection than
obfuscation. Checking for the presence of debuggers in code and
tricking de-compilers using non-instruction data or junk bytes” are
other anti-reversing techniques.

It must be recognized that all of these anti-reversing techniques
can only deter reversing, not necessarily prevent it. But it is
imperative that code be protected as much as is possible from the
risks of reversing. Eldad Eilam’s book, Reversing - Secrets of Reverse
Engineering, is an excellent resource and a must-read for anyone
interested in writing irreversible code.

E - Elevated Privileges Required to Run

The principle of least privilege states that a user or process

is given explicitly only the necessary, minimum level of access
rights (privileges) for the minimum amount of time required to
complete the user's or process's operation. Sometimes, however,
code that runs in a less secure development environment
experiences hiccups or fails to run when deployed into a more
restrictive production environment. The usual solutions in such
cases are to increase the privilege level under which the code
can execute, or remove the checks for privilege levels. Neither
of these “solutions” is recommended from a security standpoint.
They could lead to circumventing permissions, allowing users and
processes with lower privilege to execute code that they are not
authorized to.

An additional example is code that can be explicitly set to run
with elevated (administrative) privileges programmatically, another
classic indicator of insecure code.

public class HelloWorld |

public class HelloWorld |

double dl =

public static void main(String args(]) { double d2 =
System.out.println(“Bello World!"®):

|
] for (int 1l

dl = d2
1

for (imt i1
dl = dl
)

public static void main({String args(]) |{

0.0134654879327;
0.0234987519084;

=0; 11 < 72; 11+) |
+ 0.00000001020102;

= 0; 11 < 59; il++) |
+ 0.00000001120102;

//System.out.printlin(dl+d2);

L ((d1+d2) > 0.04699753441986) |
System.out.princtln(“Hello World!®);

]
else 1f ((dled2) < 0.04699753441186) (
System.out.println("Goodbye World'®):

//This chain of alternatives could go on for a
//long time...

Configuration differences between the development and
production environments must be ensured so that code can
execute with least privilege, irespective of the environment. It

is also imperative to ensure that code explicitly set to run with
elevated privileges is carefully monitored (audited) and managed.

Conclusion

‘Don't write insecure code’ is one of the eight secure habits discussed
in"8 Simple Rules for Developing More Secure Code™.' Without a
thorough understanding of what constitutes insecure code, it would
be unfair to expect developers to write more secure code.

“It is critical to all those who write
code to make it a habit to incorporate
security in the code they write. ”

Should your code fall victim to a security breach, the code itself
would be deemed innocent, but that kind of leniency will not be
extended to the individual, team, or organization that wrote the
code. So it is critical to all those who write code to make it a habit
to incorporate security in the code they write,

Secure Code Characteristics

. . ____--‘-"'"'---...
‘Writing secure code has the added benefit

of producing code that is of quality —
functional, reliable, and less error-prone.”

o

It would be far beyond the scope of this paper to enumerate
ways that one can avoid writing insecure code, and/or write sec
code. Instead, this should be treated as merely an eye-opener ure
how to code securely, and the tremendous risks of not doing 53

all the

Just as a game of chess produces an infinite number of moves
once the game begins, with a imited number of opening gambits
understanding the characteristics of insecure code 5 one of the '
first moves to ensure that code is written to be hacker-resistant.
Insecure code means checkmate.

p——

SUmmar

Y of Insecure Concepts

Injectable Code

What is it?

Code that makes
injection attacks
possible by allowing user
supplied input to be
executed as code.

Insecure Code
Examples

No input validation,
Dynamic construction
of queries

How to Fix It

Input Validation,
Parameterized queries

Non-Repudiation
Mechanisms not Present

Authenticity of code
origin and actions are
disputable.

Unsigned executables,
Auditing not present

Code Signing

» |

Spoofable Code

Code that making
spoofing attacks
possible.

Predictable session
identifiers, hard-coded
passwords, caching
credentials and allowing
identity impersonation

Session, Cache and
Password Management,
Managing identity
impersonation

Exceptions and Errors
not Properly Handled

Code that reveals
verbose error messages
and exception details, or
fails-open in the event of
a failure.

Verbose errors,
Unhandled exceptions,
Fails open

Non-verbose error
messages, Explicit
exception handing (Try-
Catch-Finally) blocks,
Fail-secure

Cryptographically Weak
Code

Code that uses non-
standard, weak or
custom cryptographic
algorithms and manages
key insecurely.

Key not derived and
managed securely

Do not use weak, non-
standard algorithms,
custom cryptography,
Use RNG and PRNG for
key derivation.

Unsafe/Unused
Functions and
Routines in Code

Code that increases
attack surface by
using unsafe routines
or containing unused
routines.

Banned API functions,
Easter Eggs

Do not use banned

APIls unsafe functions,
Input validation, remove
unused routines and
Easter eggs.

Reversible Code

Code that allows for
determination of
internal architecture,
design.

Unobfuscated code,
Unsigned Executables

Code obfuscation
(shrouding), Digitally
signing code

Elevated Privileges
Required to Run

Code that violates
the principle of least
privilege.

Administrative accounts

Environment
configuration, Code set
explicitly to run with
least privilege

About (ISC)™®

The International Information Systems Secunty Certification
Consortium, Inc. [(ISC)*®] 15 the globally recognized Gold Standard
for certifying information secunty professionals. Founded in

1989, (ISC)? has now certified over 60,000 information security
professionals in more than 130 countnies. Based in Palm Harbor,
Flonda, USA, with offices in Washington, D.C.. London, Hong
Kong and Tokyo. (ISC)? issues the Certified Information Systems
Secunty Professional (CISSP®) and related concentrations,
Certified Secure Software Lifecycle Professional (CSSLP"),
Certification and Accreditation Professional (CAP®), and Systems
Security Certified Practitioner (SSCP®) credentials to those
meeting necessary competency requirements. (15C)? CISSPand
related concentrations, CAR and the SSCP certifications are
among the first information technology credentials to meet the
stringent requirements of ANSI/ISO/IEC Standard 17024, a global
benchmark for assessing and certifying personnel. (I5C)? also
offers a continuing professional education program, a portfolio
of education products and services based upon (ISC)*s CBK®, a
compendium of information secunity topics, and is responsible for
the (ISC)? Global Information Security Workforce Study. More
information is avalable at www.isc2.org.

About the Author

Mano Paul, CSSLF, CISSE AMBCI, MCAD, MCSD, Network+
ECSA 1s CEO and President of Express Certifications and '
SecuRisk Solutions, companies specializing in professional training
certification, security products and security consulting, His securntly
experience includes designing and developing software security
programs from Compliance-to-Coding, application security risk
management, security strategy and management, and conductlng
security awareness sessions, training, and other educational
activities. He is currently authoring the Official (ISC)? Guide to
the CSSLP 15 a contributing author for the Information Security
Management Handbook, writes periodically for Certification,
Software Development and Security magazines and has
contributed to several security topics for the Microsoft Solutions
Developer Network. He has been featured in various domestic
and international security conferences and is an invited speaker
and panelist in the CSI (Computer Security Institute), Catalyst
(Burton Group), TRISC (Texas Regional Infrastructure Security
Conference), SC World Congress, and the OWASP (Open Web
Application Security Project) application security conferences.
He can be reached at mano.paul@expresscertifications.com
or mano.paul@securisksolutions.com.

Enckson,), Hacking: The Art of Explortation. No Starch Press. ISBN 1593270070

b The Chronology of Data Breaches.
httpsiwww privacynghts.org/ar/ChronDataBreaches htm

¢ CoDe Magazine - All Input 1s Evil- So Make Sure You Handle it Correctly and
with Due Care
http/Awww code-magazine com/artcle aspx’quickid=070506 |
d Saltzer, |H and Schroeder. M D.The Protection of Information in
Computer Systems
httpJ/iweb mitedu/Sahzeriwww/publications/protection/
e Favonte Software Easter Eggs. IT World
http/iwww itworld com/pnnt/é64689
f Chikofsky,E.] & Cross.). H Reverse engineenng and dewgn recovery
A taxonomy. IEEE Software. 7(1) 13-17. January 1990

g HelloWorld Obfuscation Image Reference
htip/ioreilly comipub/a/mac/2005/04/08/ code himl

h Eilam, E.Reversing Secrets of Reverse Engineening Wiley. ISBN 0764574817
i+ B Simple Rules For Developing Mare Secure Code . Microsoft Developer

Network (MSDN)
http fimsdn microsofl com/en-us/maganine/cc 1635 18 aspx

© 2009, {I5C)’ Inc (ISC)*. CISSPISSAP ISSMP ISSEP CAP SSCP and CBK are

registered marks and CSSLP is a service mark of {1SC)°. Inc e
0909

